skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turkcan, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vision Language models (VLMs) have transformed Generative AI by enabling systems to interpret and respond to multi-modal data in real-time. While advancements in edge computing have made it possible to deploy smaller Large Language Models (LLMs) on smartphones and laptops, deploying competent VLMs on edge devices remains challenging due to their high computational demands. Furthermore, cloud-only deployments fail to utilize the evolving processing capabilities at the edge and limit responsiveness. This paper introduces a distributed architecture for VLMs that addresses these limitations by partitioning model components between edge devices and central servers. In this setup, vision components run on edge devices for immediate processing, while language generation of the VLM is handled by a centralized server, resulting in up to 33% improvement in throughput over traditional cloud-only solutions. Moreover, our approach enhances the computational efficiency of off-the-shelf VLM models without the need for model compression techniques. This work demonstrates the scalability and efficiency of a hybrid architecture for VLM deployment and contributes to the discussion on how distributed approaches can improve VLM performance. Index Terms—vision-language models (VLMs), edge computing, distributed computing, inference optimization, edge-cloud collaboration. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-pointsupervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU. 
    more » « less
  3. We present methods and applications for the development of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its “eyes,” which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its “brain,” the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add value to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency highbandwidth sensing and networking technologies, in other words, cyberphysical systems (CPS). We will first review the DT pipeline enabled by CPS and propose our DT architecture deployed on a real-world testbed in New York City. This paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. We introduce Boundless, a photo-realistic synthetic data generation system for enabling highly accurate object detection in dense urban streetscapes. Boundless can replace massive real-world data collection and manual groundtruth object annotation (labeling) with an automated and configurable process. Boundless is based on the Unreal Engine 5 (UE5) City Sample project with improvements enabling accurate collection of 3D bounding boxes across different lighting and scene variability conditions. We evaluate the performance of object detection models trained on the dataset generated by Boundless when used for inference on a real-world dataset acquired from medium-altitude cameras. We compare the performance of the Boundless-trained model against the CARLA-trained model and observe an improvement of 7.8 mAP. The results we achieved support the premise that synthetic data generation is a credible methodology for training/fine-tuning scalable object detection models for urban scenes. 
    more » « less
  5. Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing *existing* street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera's video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale. 
    more » « less
  6. We introduce Constellation, a dataset of 13K images suitable for research on detection of objects in dense urban streetscapes observed from high-elevation cameras, collected for a variety of temporal conditions. The dataset addresses the need for curated data to explore problems in small object detection exemplified by the limited pixel footprint of pedestrians observed tens of meters from above. It enables the testing of object detection models for variations in lighting, building shadows, weather, and scene dynamics. Weevaluate contemporary object detection architectures on the dataset, observing that state-of-the-art methods have lower performance in detecting small pedestrians compared to vehicles, corresponding to a 10% difference in average precision (AP). Using structurally similar datasets for pretraining the models results in an increase of 1.8% mean AP (mAP). We further find that incorporating domain-specific data augmentations helps improve model performance. Using pseudo-labeled data, obtained from inference outcomes of the best-performing models, improves the performance of the models. Finally, comparing the models trained using the data collected in two different time intervals, we find a performance drift in models due to the changes in intersection conditions over time. The best-performing model achieves a pedestrian AP of 92.0% with 11.5 ms inference time on NVIDIA A100 GPUs, and an mAP of 95.4%. 
    more » « less
  7. Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS’s inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precisedestinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing existing street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera’s video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale. 
    more » « less